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Introduction

Subject. Spinal cord injury (SCl) is a devastating condition affecting as many as 306,000
individuals in the US alone (http://www.brainandspinalcord.org/spinal-cord-
injury/statistics.html; as of Oct. 28, 2013). Beyond US soil, SCl is an all-too-common
result of military combat — all with an enormous emotional, social, and financial cost to
individuals and to society. Despite much needed attention over the past few decades
and some significant advances, the cellular and molecular mechanisms leading to SCI are
not yet clear. Purpose: A major consequence of SCl is the development of an astrocytic
glial scar. Although the scar has benefits for tissue repair, it also blocks neural
regeneration. Inhibitory chondroitin sulfate proteoglycans (CSPGs) are elevated in the
glial scar and are a major deterrent to successful regeneration. To develop a more
efficient method to accomplish CSPG degradation (than the current use of the bacterial
enzyme chondroitinase), we are studying a normally occurring catabolic protein for
CSPG degradation, the neural aggrecanase, ADAMTS-4. Scope: We are using a two
prong approach —employing studies both in vitro, and in vivo. We are isolating,
purifying and testing aggrecanase on astrocytes in tissue culture; and we are testing
aggrecanase lentiviral constructs in an injury model in vivo, alone and in combination
with chondroitinase, to ameliorate CSPG-induced inhibition. Studies conducted to date
show a strong correlation between treatments with ADAMTS-4 and reduced sensory
and motor behavioral deficits following a dorsal SCl in a rodent model.
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The following is a Progress Report for COMRP grant SC090248, entitled “A Better Way to Excise
Inhibitory Molecules (CSPGs) from a Spinal Cord Injury Scar to Promote Regeneration”. Each point of

progress is addressed in relationship to the Statement of Work provided in the original application.

Statement of Work

Overarching goal: To successfully degrade aggrecan and related CSPGs using naturally occurring
ADAMTS-4, alone and in combination with the current "gold standard" (chondroitinase) to attenuate

axonal inhibition, and promote plasticity and regeneration of adult neurons of the CNS.

Task 1. We will determine if aggrecanase and chondroitinase-mediated degradation of CSPGs

produced by primary rat cortical astrocytes will foster neurite outgrowth in vitro.

1la. We will confirm that primary astrocytes upregulate CSPGs in vitro in response to injury (experimentally
induced by trauma and/or administration of TGF-beta (Smith and Strunz, 2006). We will also catalogue the

specific PGs upregulated and their time course (months 1-4).

In the previous year (as presented in the 2012 Progress Report and summarized here), we did the following:
Neonatal rat cortical astrocyte cultures were incubated with TGF-B (to induce injury), medium was collected
and prepared for analysis of total cellular RNA, to determine quantitative real time PCR analysis of
proteoglycan mRNA. Both medium and cell layer samples were chromatographed on Sephadex G-50 then
applied to a column of DEAE Sephacel. Chromatography of medium and cell layers from astrocyte cultures
each revealed several peaks that were pooled and concentrated. Dot blot analyses of pooled fractions using
antibodies specific for different CSPGs were performed and reacted with antibodies to aggrecan, neurocan,
phosphacan, NG2, brevican, versican, G3 domain of aggrecan, and aggrecan CS-2 domain aggrecanase-
generated neoepitopes GELE and KEEE (mixture of both antibodies). Images to support these data were

provided in the previous annual report.

Continuing onward, previous and recent analyses showed the isolated pools were largely mixtures of
genetically distinct proteoglycans. We detected aggrecanase generated fragments in the major peak of

medium-derived PGs eluting from the DEAE column (reacting with GELE/KEEE antibodies), which was also
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reactive with an antibody to the aggrecan G3 domain (also consistent with CS---substituted fragments having

an intact C-terminus, this pool being highly inhibitory to neurite outgrowth.

Newly, the PG pools were further characterized for sulfation patterns using HPLC sulfated disaccharide
analyses. To summarize, samples (5-10 micrograms GAG) of astrocyte cell layer lysate pools 1-4 and astrocyte
conditioned medium pools 1-3 (Figure 1) were sent to the Glycotechnology Core Resource at the University of
California - San Diego for analysis. Initially only the major peaks, medium pool 3 (M3) and cell layer pool 2 (C2)
were analyzed for monosaccharides by high-performance anion exchange chromatography with pulsed
ampherometric detection (HPAEC-PAD) using 10% of each sample. Both M3 and C2 contained a high amount
of GIcNAc and a small amount of GalNAc. The low GalNAc content suggests that chondroitin sulfate (CS) is a
only minor component of both pools. The high GIcNAc content of both pools suggested an abundance of
heparan sulfate (HS) or keratan sulfate (KS). This result was not surprising for the C2 sample, which may be
enriched in cell-associated HSPGs. In addition to GIcNAc, the M3 sample contained a small amount of fucose
(Fuc) and galactose (Gal), indicating the possible presence of keratan sulfate Il (KSll). CS-disaccharide analysis
was performed with fluorometric detection. This analysis confirmed a higher amount of CS in the M3 sample
compared to the C2 sample. The M3 and C2 samples were next analyzed for heparan sulfate disaccharides on
UPLC-FL using BEH-C18 column after AMAC tagging of the disaccharides. Heparan sulfate analysis confirmed
the presence of HS in both M3 and C2. There were differences in the HS disaccharide spectra between M3 and
C2. Notably, there was relatively less AUA2S-GIcNH26S present in the C2 sample and more of this species in

the M3 sample.

In addition to the above data, a postdoc in the laboratory Dr. Justin Beller, under separate funding, is

investigating the role of sulfation in these PGs related to axonal guidance and regeneration.

Other aspects of this task were reported on previously.

1b. Using a lentiviral system, we will induce primary astrocytes to degrade CSPGs via aggrecanase,
chondroitinase, or both. Degradation of CSPGs will be confirmed using an anti-C-4-S antibody (2-B-6), which
indentifies CSPG stubs following chondroitinase cleavage, or by antibodies to neoepitopes that are

generated when aggrecanase cleaves the CSPG protein core into specific fragments. (months 5-7).

We have generated three ADAMTS-4 expression constructs, each with a specific, useful characteristic, e.g. His-
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tag for identification. Constructs have been transfected into HEK293 cells (model of human astrocytes).

Results of this task were reported previously.

To produce recombinant ADAMTS-4 protein for experiments in vitro, or for injection into rat spinal cord injury
sites (for Task 2a), we transiently transfected one of the constructs (#703; having a C-terminal FLAG tag) into
HEK293T cells for protein expression, which gave high levels of recombinant protein expression. The
pBOB/ADAMTS-4/FLAG construct lacks a reporter gene, so SDS-Page and Western blot analyses were used to
screen for Flag tagged ADAMTS-4. The co localization of ADAMTS-4 and Flag signal indicate successful
transduction and expression of ADAMTS-4 (Figure 2.) Further, chABC transduction was successfully done and is

shown by a GFP reporter gene (green fluorescence) in a confluent astrocytes monolayer (Figure 3).

We developed a lentiviral expression system that enables the inducible expression of ADAMTS4 in primary
cultured astrocytes, as well as inducible expression in vivo, in a rat model of spinal cord injury, but this system
was fraught with problems (some we overcame), but good practices dictated we abandon this direction. We

are currently using only the His-tagged expression construct to accomplish our goals both in vitro and in vivo.

1c. Using the above system, we will determine if aggrecanase-mediated degradation of CSPGs in primary rat
cortical astrocytes induces growth-inhibiting (CSPG-producing) astrocytes to become growth permissive

(CSPG-degraded), and thereby foster regeneration of adult neurons (CST, RST, DC (DRG)) (months 8-11).

As progress from our previous report, we examined PG production and enzyme degradation of PGs in a co-
culture model using transduced primary neurons and primary injured astrocytes. We cultured primary rat
astrocytes as described previously with and without TGF-beta (activates astrocytes and induces them to
upregulate proteoglycans, i.e. injured). Primary chicken DRG neurons (E9) were grown on confluent
monolayers of these astrocytes, or in sparse cultures such that the neurons adhered to laminin or PLO first,
then encountered transfected astrocytes (Figure 4). These cultures look promising qualitatively, but are

currently being analyzed for quantitative measures, e.g. neurite lengths.

1d. We will test the responses of other neurons, e.g. 5HT, which have been shown to be robust following
SCl in previous studies (months 12-13). Using the NS-1 neurite outgrowth assay, we will determine CSPG
production (ELISA), CSPG cleavage (Western blot analyses), and aggrecanase activity (enzyme activity assays

and immunostaining for neoepitopes) (Miwa, Gerken et al. 2006; Miwa, Gerken et al. 2006). Further, we will
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isolate aggrecanase-generated fragments and test their effect(s) on elongating axons in vitro.

These assays, although partially automated, are highly time consuming. Thus, we are limiting our analyses to
only DRG neurons, the most relevant of the neuron types listed for this study, and the one to which we have

the most data for comparison.

Task 2. We will determine if aggrecanase-mediated degradation of CSPGs produced in vivo, in a rat spinal
cord injury model system, will permit regeneration (months 13-36), and the effects of combining

aggrecanase and chondroitinase treatments.

2a. Lentiviral transfection of ADAMTS-4 in an SCI model system will be performed, using currently
approved methods (IACUC Protocol #2010-0702; approved 8-18-14). We will transduce, using a lentiviral

vector, ADAMTS-4, within an injured region of the rat spinal cord (dorsal hemisection), (months 13-18).

Lentiviral preparation was described in the previous report (2012).

In preparation for injection in vivo, it was necessary to show the aggrecanase was active. We used both active
and heat-inactivated aggrecanase for digestion of recombinant aggrecan, the results of which are shown in
Figure 5. Recombinanat aggrecan (40ng) was digested in the absence (lane 1) or presence (lanes 2-5) of
recombinant ADAMTS-4 (15 ul of 5mg/ml stock) at 37 °C. Incubation times ranged from 2 hours (lane 2), 12
hours (lane 3) to 24 hours (lanes 1, 4, 5). Recombinant ADAMTS-4 was heat-inactivated by heating at 95 °C for
30 minutes (lane 5). These data show that the enzyme we were injection in vivo following the dorsal

hemisection spinal cord injury was active.

Surgeries. We have performed spinal cord injuries at the C-6/7 level in rat to address hand function, the focus
of this study. Reproducible, consistent injuries and resulting consistent behavioral deficits are vital for proper
determination of the success of our aggrecanase/chondroitinase treatments. For this reason, we have been

using an injury device fabricated by colleagues at nearby University of Louisville. We demonstrated details of

this procedure in the previous report (2012).

To reiterate the basic procedure here, rats received cervical SCI after learning various sensory and motor
behavioral tasks. Adult male Sprague-Dawley rats (250-300g) were anesthetized with 5% isoflurane mixed with

100% oxygen at a flow rate of 4L/minute. A laminectomy at C6-C7 was performed to expose the dorsal roots.
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Using the Vibraknife (SM Onifer et al., 2005; RL Hill et al., 2009), a dorsal hemisection was made to a lesion the
dorsal columns (DC) and a small dorsal-most portion of the corticospinal tracts (CST). At the time of injury, a
thin silicone tube with an osmotic mini-pump (Alzet model 2002, Durect Corp) was inserted into the
subarachnoid cavity using a surgical microscope. The parameters for the pump were 200-250 ul solution, 0.5
ul/hr and 14-d delivery time. The solutions administered were recombinant aggrecanase or aggrecanase LV,
and as a control, heat-inactivated aggrecanase. The tube was sutured to the spinous process with Vetbond to
anchor it in place and the mini pump was placed under the skin on the animals back at the position of T2.
After, the muscles and skin were closed in layers and the animals were cared for according to post-surgical
methods approved in protocol 2010-0702. Only 2-3 animals over the whole series of experiments had any
difficulties following surgery. The well-being of the animals was tended to, and the animals were removed

from the study.

Still remaining to be done under the no cost extension of this award is the combination of aggrecananse with
chondroitinase, using the model above. Now that all facets are optimized, this should be very straight forward.
A major goal of this study is to use combinational therapy (aggrecanase + chondroitinase (cABC))
to promote regeneration in vivo. One setback for this study was that our aggrecanase lentivirus was
prepared using a different backbone than the chondroitinase lentiviral vector, supplied by the Smith lab
(George Smith, PhD: colleague and previous collaborator). Taking advantage of the lentivirus expertise within
SCoBIRC (Charles Mashburn, PhD), our ADAMTS-4 insert has also been cloned into a second construct, pCSC-
SP-PW, which matches the construct used to generate the cABC lentivirus. This protocol will result in fewer
experimental variables when the reagents are used simultaneously in future experiments. As we did for
aggrecanase, we have confirmed chase activity compared to a heat-inactivated control (Figure 6) and are now
ready for combinational studies in vivo with aggrecanase. Series to begin following DOD approval of no cost
extension. 2b. Aggrecan degradation in the lesion will be monitored with anti-neoepitope antibodies that will
recognize aggrecan fragments. Using a variety of microscopy methods and established tract tracing
techniques, neurons traversing the glial scar depleted of aggrecan by ADAMTS-4 will be quantified relative to

untreated rats. (months 19-24).

Following 14 day infusion of aggrecanase, some animals were euthanized, and spinal cord tissue from test and
control animals were screened via Western blot to confirm diffusion of ADAMTS-4 from the pump injection

site. To identify aggrecanase distribution in vivo, we used Western blot analysis on spinal cord sections (Figure,
7). Distribution of ADAMTS-4 in spinal cord tissue was visualized using a C-terminal His tag. A single spinal cord

was cut into 7 equal sections representing the epicenter (E), caudal sections (C1 — C3) and rostral sections (R1 —
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R3) regions relative to the site of ADAMTS-4 injection (C6/7). The data show diffusion on aggrecanase into the

spinal cord mainly at the epicenter and at least partially into both rostral and caudal directions.

To show that ADAMTS-4 is actively degrading aggrecan in vivo, we used 1° antibody anti-NITEGE (to aggrecan
core neoepitopes after aggrecanase treatment) (Figure 8, longitudinal sections; and Figure 9, transverse
sections), and higher magnification in Figure 10. Sections were cut on a freezing microtome (cryostat) at 20
um, mounted on glass slides, and stained. In Figure 8, injured rats were infused with active ADAMTS-4 for 14
days. Brown reaction product (DAB) is staining with NITEGE antibody counterstained with Hematoxylin (R =
Rostral, C = Caudal, and E = Epicenter.) Samples were selected in each direction from the injury site
approximately 4 mm long and including a 4 mm section around the injury site (Dorsal = up, Ventral =

down.) The catheter placement for the mini pump as at C2 (near cervical 6/7). In Figure 9, cross sections
(transverse) were taken of rat spinal cord from sham and animals treated with ADAMTS-4 for 14 days, then
stained with anti-NITEGE. Brown reaction product indicates aggrecan core protein neoepitope, thus cleaved
by aggrecanase (both endogenous and exogenous aggrecan is degraded). Figure 10 shows high magnification
of sections from the cohort in Figure 9, to show matrix degradation around individual cells at the white

matter/gray matter interface of the dorsal cord.

2c. Histological assays to identify all cell types and molecules of interest in vivo. (months 25---28)

Histological analyses were reported on previously (2012). Histological analyses are ongoing with analyses in

vivo (see Figures 8 and 9).

2d. Behavioral assays. Repeat in vivo paradigm and test behavioral recovery using the Reach, Grasp and
Pellet Retrieval test (motor), the Grid Walking test (motor), and the Sticker Attention test (sensory) (months
29-36).

Animals dedicated for behavioral studies were trained in the behavioral paradigms prior to injury and
treatment. Then, two weeks after injury and aggrecanase treatment, the animals began a timed progression
of behavioral assessments. All data were analyzed using repeated measures ANOVA (RM ANOVA), including
the between groups factor and analysis of the interaction term. Following significant main effects of testing
times, simple RM ANOVA procedures re performed within each group to compare changes in responses over

time. All post hoc comparisons are performed using Tukey HSD post hoc t-tests based on the resulting

10
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experimental sample sizes, number of comparisons, and independence of means. All studies were done blind

for both experimenter and analyzer.

Chris Calulot (senior technician) is now testing the last cohort of the “aggrecanase alone” series, which will give

a sample size of 12 for both the heat-inactivated and active ADAMTS-4 groups and 7 for the sham group. This

data will be ready for complete analysis in about 2 weeks.

The results of the behavioral tests thus far are very encouraging! The dorsal hemisection SCl at C6/7 in rat
causes an impairment of the fine mechanical sensory systems and moderate motor impairment in the
forepaw. Sensation is tested using the Sticker Sensory Task (Figure 11), and is done only after the final motor
test, due to behavioral acclimation. The graph to the left shows there is a significant increase in the time an
injured rat first notices the sticker placed on its paw. However, treatment with a recombinant aggrecanase
abolishes this increase and returns it to an interval not statistically different from uninjured animals. The graph
to the left shows that over a course of 5 trials, the injured animals (both those receiving active aggrecanase
and those not) are showing reduced latency though not returning to uninjured sham levels. However, a trend
is appearing suggesting that aggrecanase treatment is reducing the amount of time till first notice in the initial
trials, likely before the animals get acclimated to the test. Figure 12 shows results of the Staircase Retrieval
task, an indication of forepaw use for reaching, grasping and retrieving food to the endpoint of successful
consumption of food pellets (see grant for details of behavioral assay.) These data show significant

improvement in the Staircase Retrieval test with 14-day aggrecanase administration.

Personnel:

Previous collaborators on the study were Dr. Thomas Hering, Case Western Reserve University, Cleveland, OH,
and Dr. Stephen Onifer, now at Palmer Rehabilitation Center in Davenport, IA. Both investigators remain

committed to consulting for this study, but have not been active in research in the progress report period.

11
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FIGURES

Figure 1. Chromatographic analysis of carbohydrate composition from astrocyte pools.

Astrocyte Cell Layer Lysate Astrocyte Conditioned Medium
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Figure 2. Media samples from astrocytes transduced with pBOB/ADAMTS-4, probed with FLAG-M2 @
1:2000. Co-localization of ADAMTS-4 and Flag signal indicate successful transduction and expression of
ADAMTS-4.
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Figure 3. Rat primary astrocytes transduced with pBOB/chABC/GFP lentivirus.

14
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Figure 4. Representative image of DRG neurons and astrocytes in co-culture, demonstrating the basic
paradigm. Rat primary astrocytes are cultured in the presence of TGFB (5ng/ml, 48 H), then transformed
overnight (to over or under express a variety of CSPGs), followed by seeding of chick DRG neurons (E9). The
co-cultures are then fixed and labeled with Blll-tubulin (TRITC) to image neurons, and GFAP (Cy5) 1° Ab’s to

image astrocutes, and DAPI to abel all nuclei. (40X). Quantitative analyses are ongoing.

15
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Figure 5. Active vs Hl ADAMTS-4 digestion of r-aggrecan. r-Aggrecan (40ng) was digested in the absence
(lane 1) or presence (lanes 2-5) of r-rADAMTS-4 (15 pl of 5mg/ml stock) at 37 °C. Incubation times ranged
from 2 hours (lane 2), 12 hours (lane 3) or 24 hours (lanes 1, 4, 5). r-ADAMTS-4 was heat-inactivated by

heating at 95 °C for 30 minutes (lane 5).

16
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Figure 6. Chondroitinase ABC activity assay. Degredation confirmed using 1° Ab clone 3-B-3 to C-6-S stubs

revealed following enzyme degradation.
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Figure 7. Distribution of recombinant ADAMTS-4 in spinal cord tissue as visualized by a C-terminal His tag. A
single spinal cord section has been cut into 7 equal sections representing the epicenter (E), caudal (C1 - C3)

and rostral (R1 —R3) regions relative to the site of -rADAMTS-4 injection.

18
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Figure 8. Injured rat infused with ACTIVE ADAMTS-4 for 14 days. Brown is staining with NITEGE antibody
counterstained with Hematoxylin. R = Rostral, C = Caudal, and E = Epicenter. |took two sections in each
direction from the injury site approximately 4 mm long and including a 4 mm section around the injury site.

Dorsal = up, Ventral = down. The catheter placement for the mini pump is at C2 (near cervical 6/7).

19
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Figure 9. Cross section of rat spinal cord from sham and animals treated with ADAMTS-4 for 14 days, then
stained with antibody NITEGE, directed to an epitope on cleaved aggrecanase protein core. DAB reaction

product (brown) indicates aggrecan core protein neoepitope, thus cleaved by aggrecanase.

20
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Figure 10. High magnification of images shown in Figure 9. Note the intense reaction product, i.e.
degradation of aggrecan (blue arrows), surrounding individual cells at the white matter/gray matter
interface of the dorsal horn of the spinal cord where DRG axons are extending in treated animals not
present in sham (control). Image at right indicates the region from which the images on the left were taken;

see Figures 8 and 9 for location of C1, E and R1.

~
———
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Figure 11. Significant improvement in Sticker Sensory Task results following ADAMTS-4 treatment.
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Figure 12. Significant improvement in Staircase Motor Task for reaching, grasping and retrieving food pellets

following ADAMTS-4 treatment.
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Key research accomplishments

Provided to us in the progress report review following submission of our year one annual report was the
statement: “The Pl should note that project milestones, such as completing proposed experiments or
recruiting participants, are not acceptable as key research accomplishments. The Key Research
Accomplishments section should be a bulleted list of important research findings resulting from the
achievement of project milestones”. The majority of our achievements, by this definition, relate to the

accomplishment of the statements of work.
Two previous related Key Research Accomplishments were our discoveries that:

e Removal of KS chains further enhanced NS-1 outgrowth, beyond that of chondroitinase
treatment alone; and

e Further degradation with peptide-N-glycosidase F, which cleaves N-linked oligosaccharides from
the core protein, resulted in a further enhancement of NS-1 neurite outgrowth

Two current Key Research Accomplishments, the second being quite major and an indicator of success,
to add to this growing list are:

e Unexpected delineation of the parameters for aggrecanase diffusion into living spinal cord
tissue, when administered at a Vibraknife lesion site, which will help define future experiments
for any laboratory using this technology

» Aggrecanase treatment reduces the severity of injury deficits following C6/7 spinal cord injury, a
major goal of this line of experimentation.

These findings are novel and exciting, and are likely to have an important impact on the field of
regeneration research. They are being presented both at UK (Nov. 2013), and at the International
Society for Neuroregeneration Research at Asilomar, CA in Dec. 2013.

24



Reportable outcomes.

Abstracts related to DOD grant since previous Progress Report:

Beller JA, Calulot CM, Hering TM, Snow DM, 2012. Post-translational modifications of aggrecan
and inhibition of neurite outgrowth. Journal of Neurotrauma (Natl Neurotrauma Soc. meeting),
July 2012.

Beller, JA, Hering, TM, Calulot, CM, and Snow, DM. A Novel High-Throughput Neurite Outgrowth
Assay: Enzymatic Digestion Reveals Contribution of Post-Translational Modifications of Aggrecan
on Neurite Inhibition. 19th Annual Kentucky Spinal Cord & Head Injury Research Trust
Symposium, Louisville, Kentucky, May 6, 2013.

Beller, JA, Hering, TM, Calulot, CM, and Snow, DM. A Novel High-Throughput Neurite Outgrowth
Assay: Enzymatic Digestion Reveals Contribution of Post-Translational Modifications of Aggrecan
on Neurite Inhibition. National Neurotrauma Society meeting, August 2013.
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Conclusions

Importance of implications of completed research: We have generated the specific
tools and methodologies necessary to test aggrecanase and chondroitinase in vitro and
in vivo. We have done studies to optimize the in vivo model and enzyme delivery
methods. We have introduce aggrecanase in vivo using a dorsal hemisection injury
model in the rodent and are currently processing tissues for observation of cellular and
molecular changes, while also assessing short and longer term behavioral results.

Recommended changes: No recommended changes beyond those already
implemented (see Body).

“So what?” (evaluate knowledge gained as a scientific or medical product): No
scientific or medical product is evident, although the benefits of using aggrecanase
treatment to reduce deficits following dorsal SCI are evident, which is a sizeable “so
what” factor.

26
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